VALUES LINK DIFFERENT INTERESTS TO COASTAL WETLANDS

- Economy
- Community Character
- Water Quality
- Stormwater and Flooding
- Values

Planning Processes
- Engage diverse Stakeholders
- Provide support for Funding
- Offer transparency or support for Decisions

Source: Derek Davis/Staff Photographer of Portland Press Herald
Coastal Wetlands Keep Our States Safe, Healthy & Flourishing

When you protect Coastal Wetlands, you also protect...

Fishing
Coastal & estuarine recreational fishing brings up to $542 million annually to NH & ME

Air & Climate
Coastal wetlands absorb carbon 3-5x faster than tropical forests

Shoreline
Storing sediment & reducing wave energy protects the unspoiled coastline that embodies the NH way of life

Hazard Adaptation
During Hurricane Sandy in NH & ME
- prevented over $900,000 in property damages
- protected over 26 miles of major roads

Beaches & Health
Absorbing bacteria reduces safety risks & beach advisories, which have a “rainy day” impact on businesses

Property & Infrastructure
These habitats raise real estate values by 28%

Costs for infrastructure like treatment facilities
Priority Parcels for Multiple Benefit Wetland Restoration
Sheboygan County, WI Parcels Only

Map created, June 2014 by
Laura Flecker, NOAA Digital Coast Fellow
Copyright The Nature Conservancy & The Assoc. of State Floodplain Managers, 2014.

2013 Sheboygan County Parcels
- Green: For Flood Abatement AND Water Quality
- Yellow: For Flood Abatement
- Blue: For Water Quality
- No Data
- HUC14 Catchments
- Plymouth Township

0 2.5 5 Miles
ROLE OF COASTAL WETLAND VALUES

Awareness → Analysis → Action

https://coast.noaa.gov/digitalcoast/
jane.ballard@nerra.org
<table>
<thead>
<tr>
<th>Tool</th>
<th>What does it do?</th>
<th>How would it be useful?</th>
<th>Example</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GecoServe</td>
<td>Can search by desired ecosystem service or habitat to get monetary values</td>
<td>to give a sense of monetary values available</td>
<td>Disturbance Regulation = $740/acre of coastal wetland in NH (Costanza 2008)</td>
<td>No link to study; doesn’t allow users to quickly ID which may possibly be appropriate for Benefit Transfer</td>
</tr>
<tr>
<td>Coastal County Snapshots</td>
<td>"Wetlands" page focuses on wetland area in county & provides information on the role wetlands play</td>
<td>to help tie the importance of wetland functions with values of communities</td>
<td>Wetlands support fishing economies, which = 373 jobs, $5.5 million in output from businesses & $18.9 million in revenue from self-employed in York County</td>
<td>Info is at county level; not a direct linkage with wetland values & benefits</td>
</tr>
<tr>
<td>Eco-Health Relationship Browser</td>
<td>Visually shows relationship between the environment & health impacts</td>
<td>to show link between wetland services & other issues, in this case health, with literature support</td>
<td>Wetlands affect Water Quality, Engagement w/Nature, Water Hazards, Recreation, & in turn these have various health impacts</td>
<td>Focused on general health concerns</td>
</tr>
<tr>
<td>Atlas of Ocean Wealth</td>
<td>Provides information on habitats that provide the services & values</td>
<td>to communicate role of coastal resources in protection, fishing &/or blue carbon</td>
<td>example maps to identify coral restoration priorities at large scale or values of mangroves</td>
<td>limited site applicability, but demonstrates potential with data; does not address a specific management question</td>
</tr>
<tr>
<td>Ecosystem Service</td>
<td>Tool</td>
<td>What does it do?</td>
<td>Management question addressed</td>
<td>Limitations</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Nitrogen Retention</td>
<td>OpenNSPECT</td>
<td>assesses impact of LU changes on nutrient/N level & concentration</td>
<td>ID areas impacted by nitrogen under different land use scenarios; compare role of wetlands & other land uses; ID what areas would be best to prioritize as outfalls, as places for water sampling, facility management or retrofits</td>
<td>Data input intensive; pollutant concentrations are averages so don't consider that more pollution could run-off in beginning of event; positive changes like nutrient uptake not considered, run-off diversions must be altered (Rozum 2013)</td>
</tr>
<tr>
<td>blue carbon, nutrient retention, coastal vulnerability, fisheries</td>
<td>InVEST</td>
<td>provides quantitative or qualitative values for selected ecosystem service under user-selected scenarios</td>
<td>Trade-offs of benefits or impacts between different management decisions for models such as Fisheries, Coastal Vulnerability, Water Purification & Nutrient Retention</td>
<td>"lots of work for what you get out of it" & "not transparent enough"; to get at multiple ES, would have to analyze LU change w/several different models</td>
</tr>
<tr>
<td>multiple</td>
<td>Marxan with Zones</td>
<td>the tool helps determine the lowest cost way of achieving a user-selected conservation goal; includes well-being</td>
<td>Helps meet multiple objectives & with multi-use zoning for natural resource management</td>
<td>Requires extensive time & expertise, stakeholder engagement, data acquisition. Needs more quantitative data on ecosystem services portion</td>
</tr>
</tbody>
</table>

From Slide 4 DRAFT infographic

- **Symbol Images**: Child Swimmer: Tracy Saxby, Shore Fishing: Kate Moore; both IAN Image Library (http://ian.umces.edu/imagelibrary/)