Creation and Use of a Decision Support Tool for Culvert Prioritization

JAKE AMAN, WELLS RESERVE
TOM REINAUER, SOUTHERN MAINE PLANNING AND DEVELOPMENT COMMISSION
Major Storm Events:

- **August, 1991 – Hurricane Bob**
 - 8 inches of rain
- **October, 1996**
 - Slow – moving Noreaster combined with moister from Hurricane Lili
 - 19 inches of rain – exceeded all records back to 1871 by 5.5 inches
- **May, 2006 “Mother’s Day Storm”**
 - 15 inches of rain, stalled system lasted 8 days (majority fell May 13-15)
- **April, 2007 “Patriots Day Storm”**
 - 8.5 inches of rain + snow melt, along with coastal flooding/surge
- **February 26, 2010**
 - Noreaster, 6-8 inches of rain, snow and high winds
- **March 15, 2010**
 - Noreaster, 6-10 inches of rain + snow melt, along with coastal flooding/surge
A lot of other work was going on as well…

- Saco Bay Sea Level Adaptation Work Group (SLAWG)
 - Vulnerability Assessment – Sea Level Rise and Potential Impacts by 2100
 - Road Infrastructure Assessment Report – 2015

- 2014 - Integrating Storm Surge and Sea Level Rise Vulnerability Assessments and Criticality Analyses into Asset Management at MaineDOT
 - COAST Decision Support Tool
 - Analyzed cost/benefit, life cycle costs for different infrastructure options

- Catalysis Adaptation Partners – Minnesota DOT Flash Flood Vulnerability and Assessment project – 2014
Project Steering Committee

- Maine Audubon
- U.S. Fish and Wildlife Service, Gulf of Maine Coastal Program
- The Maine Geological Survey
- Maine Department of Transportation
- The Nature Conservancy
- Southern Maine Planning and Development Commission
- Biddeford, Eliot, Kennebunkport, Kittery, Ogunquit, Saco, South Berwick, Wells and York
Initial Project Goals

- Maps of MaineDOT bridges, scour bridges, and culverts
- Maps of essential services and locations (Fire/Rescue, hospitals, police etc.)
- Providing MaineDOT with a list of rated and prioritized culverts based on available data
- Draft and final reports in paper and electronic PDF format
Initial Project Flow Chart

Information Sources
- 2006/2007 Storms
- SLOSH Mapping
- Bridge/Culvert Data

Preliminary List of Locations
- Committee Meeting
- Refine based on Committee Input
- Review Decision Support Tool

Apply DST to Selected Locations
- Committee Meeting
- Provide Ratings/Results of DST
- Mapping and Other Products

Develop Draft Report
- Send out draft to Committee for review/comment
- Committee Meeting

Final Report
- Develop Final Report Based on Input and Submit to MaineDOT
Reality

- Slight Panic & Regroup
- Narrow the Focus
- Culverts 3-5 feet in diameter in coastal flood zone
DST Process

- Development of DST questions and spreadsheet
- Utilized examples from MnDOT, MaineDOT
- Staff test for 4 locations
- Presented draft to Steering Committee
- Changes made based on comments and staff tests
- Developed DST Instructions with step-by-step directions and sources for information/data
 - Maine Stream Habitat Viewer
 - MaineDOT Map Viewer
 - Maine Audubon Barrier Habitat Table
 - Municipal information
DST Development – Assessment Categories

- **Infrastructure-Risk**: Risk of failure or damage the culvert presents during storm events and sea level rise.

- **Infrastructure-Condition**: Current condition of the culvert, which relates to the risk that the culvert poses to failure or damage during storm surge events and/or sea level rise.

- **Habitat Potential**: The potential for improvement of primary and secondary habitat concerns.

- **Access Importance**: This category incorporates the surrounding community’s connection to emergency services, by comparing evacuation routes and distances to services.

- **Probability of Implementation**: This category assesses budgetary risks and the likelihood of local community support for restoration efforts.
Primary Habitat Values

<table>
<thead>
<tr>
<th>SiteID</th>
<th>Blocked Alaska Pond</th>
<th>Blocked Salmon Habitat</th>
<th>Salmon Critical Habitat</th>
<th>Sea Run Sockeye Habitat</th>
<th>Brook Trout Habitat</th>
<th>Tidal Marsh</th>
<th>Non-Native Fish</th>
<th>Native Aquatic Habitats</th>
<th>GFW Focus Area</th>
<th>GFW Connectors</th>
<th>Aquatic</th>
<th>Acid Buffer Capacity</th>
<th>IWWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2653</td>
<td>27.0</td>
<td>258.2</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2662</td>
<td>23.1</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>△</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2608</td>
<td>1.8</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2711</td>
<td>203.7</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2193</td>
<td>2.6</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2654</td>
<td>25.3</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2664</td>
<td>12.5</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2665</td>
<td>5.3</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2612</td>
<td>7.9</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2623</td>
<td>2.8</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2624</td>
<td>11.2</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2283</td>
<td>53.5</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2284</td>
<td>9.9</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>2282</td>
<td>8.7</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>▼</td>
<td>▼</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>
The DST in Action

- Jake takes it from here...

- http://arcg.is/1DOn8G